一種輕載除濕制冷方法及裝置與流程
本發(fā)明涉及電子通訊技術領域,尤其涉及一種輕載除濕制冷的方法及裝置。
背景技術:
精密空調是指能夠充分滿足機房環(huán)境條件要求的機房專用精密空調機,是在近30年中逐漸發(fā)展起來的一個新機種。計算機機房中擺放計算機設備及程控交換機產(chǎn)品等,由大量密集電子元件組成。要提高這些設備使用的穩(wěn)定及可靠性,需將環(huán)境的溫度濕度嚴格控制在特定范圍。早期的機房使用舒適性空調機時,常常出現(xiàn)由于環(huán)境溫濕度參數(shù)控制不當而造成機房設備運行不穩(wěn)定,數(shù)據(jù)傳輸受干擾,出現(xiàn)靜電等問題。機房精密空調則是針對現(xiàn)代電子設備機房設計的專用空調,它的工作精度和可靠性都要比普通空調高得多。
精密空調系統(tǒng)主要由壓縮機、冷凝器(室外機)、膨脹閥、蒸發(fā)器(室內機)等主要部件構成。如圖1所示,壓縮機將氣態(tài)的制冷劑壓縮為高溫高壓的狀態(tài)并送到冷凝器,散熱后成為中溫高壓的液態(tài)制冷劑。液態(tài)的制冷劑流經(jīng)節(jié)流機構(膨脹閥),變成低壓低溫的氣液混合狀態(tài),然后進入蒸發(fā)器(室內機)。氣液兩相的制冷劑在蒸發(fā)器內汽化,制冷劑從液態(tài)到氣態(tài)的相變過程吸收大量的熱量,實現(xiàn)對室內環(huán)境的制冷。從蒸發(fā)器出來的制冷劑變成了過熱的氣態(tài),然后氣態(tài)的制冷劑回到壓縮機繼續(xù)循環(huán)。在精密空調里,對于濕度主要是通過兩個部分進行調節(jié),一是空氣通過蒸發(fā)器表面時,由于溫度低于水蒸氣的露點,空氣中的水蒸氣會液化,從而降低了空氣中的濕度;二是當制冷過程中濕度低于設定值后,會開啟加濕器進行加濕,保證濕度在設定范圍內。
傳統(tǒng)上,壓縮機的轉速是根據(jù)溫度負荷來計算控制目標值,當溫度負荷越高,壓縮機運行的轉速越大,則系統(tǒng)中制冷劑的循環(huán)量越大,制冷輸出越大;反之,當溫度負荷越小,壓縮機運行的轉速越低,系統(tǒng)中制冷劑的循環(huán)量越小,制冷輸出越小。電子膨脹閥按照設定的過熱度值(定值)來調節(jié)系統(tǒng)中的流量。機房的負荷大小可以從幾千瓦到幾百千瓦逐步加負荷,但是空調壓縮機的轉速有下限值,大概在每分鐘900/min轉左右,同時電子膨脹閥為了滿足過熱度需求不能完全關閉,所以空調系統(tǒng)中制冷機的循環(huán)量有一個最低值,即空調的最小冷量輸出不為零,一般為額定設計的30%左右。數(shù)據(jù)中心IT設備功率密度大,熱負荷高,單個模塊的設計負荷達到了幾百千瓦。但是對于客戶來說,服務器機柜的負載是逐步增加的,并不是一開始就是滿負載,而機房精密空調是按照設計負載配置的。所以在數(shù)據(jù)中心運行的前期,負載率可能30%都不到,而這時空調的制冷輸出遠遠高于30%,這時當機房溫度高了,空調開啟制冷,慢慢的機房溫度降下去了,沒有制冷需求了,空調停機。這樣機房的溫度持續(xù)在波動,如果在這種場景下空調同時要對機房的濕度進行調節(jié)(除濕),那么由于空調的有效運行時間變短,除濕量下降,則精密空調對機房的濕度失去控制,導致服務器機柜運行在高濕環(huán)境中,存在風險。
技術實現(xiàn)要素:
本發(fā)明實施例提供一種輕載除濕制冷的方法及裝置,在恒溫除濕的情形下,通過轉換制冷劑在電子膨脹閥及蒸發(fā)器1部與蒸發(fā)器2部之間的流向,解決了現(xiàn)有設備中設備冗余且制冷劑流路復雜的技術問題,減少了電子膨脹閥的數(shù)量,實現(xiàn)了在具備制冷除濕功能的基礎上,還能夠操控簡單且低成本的進行恒溫除濕的技術效果。
第一方面提供一種輕載除濕制冷裝置,包括壓縮機(1)、冷凝器(2)、及蒸發(fā)器(3)、及換向閥(6)以及電子膨脹閥(8),所述蒸發(fā)器(3),分為蒸發(fā)器一部(5)和蒸發(fā)器二部(7),所述冷凝器(2),所述蒸發(fā)器(3)具有室內風機(10),所述壓縮機(1)輸入端與所述蒸發(fā)器2部(7)輸出端相連,所述壓縮機(1)輸出端與所述冷凝器(2)輸入端相連,其特征在于:
所述換向閥(6)包括端口D、端口S、端口C以及端口E,所述端口D與所述冷凝器(2)輸出端相連,所述端口S與所述蒸發(fā)器2部(7)輸入端相連,所述電子膨脹閥(8)串聯(lián)于所述換向閥(6)的端口C及所述蒸發(fā)器1部(5)之間,所述各端口與及蒸發(fā)器(3)、換向閥(6)以及電子膨脹閥(8)之間均使用制冷劑管道(4)相連;
所述輕載除濕制冷裝置在制冷并除濕時,所述換向閥(6)的所述端口D與所述端口C導通,且所述換向閥(6)的所述端口E與所述端口S導通,以使所述冷凝器(2)輸出的所述液態(tài)制冷劑通所述電子膨脹閥(8)用于節(jié)流和制冷以降低所述液態(tài)制冷劑的壓強和溫度并形成氣液兩相的制冷劑后,輸出給所述蒸發(fā)器(3);
所述輕載除濕制冷裝置在恒溫除濕時,所述換向閥(6)的所述端口D與所述端口E導通,且所述端口C與所述端口S導通,以使所述冷凝器(2)輸出的所述液態(tài)制冷劑通過所述端口D進入所述換向閥(6),并通過所述端口E輸出到所述蒸發(fā)器1部(5),所述蒸發(fā)器1部(5)對所述換向閥(6)輸出的所述液態(tài)制冷劑進行降溫并對室內空氣溫度進行加熱后,將降低溫度的所述液態(tài)制冷劑輸出到所述電子膨脹閥(8)進行節(jié)流與制冷以變?yōu)闅庖簝上嗟闹评鋭?;所述氣液兩相的制冷劑通過所述換向閥(6)的端口C與端口S輸出到所述蒸發(fā)器2部(7),所述蒸發(fā)器2部(7)將所述氣液兩相的制冷劑與室內空氣進行熱交換,以對所述室內空氣進行降溫與除濕。
有益效果:在恒溫除濕的情形下,通過改變制冷劑在電子膨脹閥及蒸發(fā)器1部與蒸發(fā)器2部之間的流向,從而精簡了設備,尤其減少了電子膨脹閥的數(shù)量,實現(xiàn)了在具備制冷除濕功能的基礎上,還能夠操控簡單且低成本的進行恒溫除濕的技術效果。具體地,首先,通過改變制冷劑在電子膨脹閥及蒸發(fā)器1部與蒸發(fā)器2部之間的流向,減少了電子膨脹閥數(shù)量,一方面節(jié)省了成本;另一方面,因為電子膨脹閥即使全開,仍然對流路具有節(jié)流作用,所以減少電子膨脹閥的使用,可以在不需要節(jié)流的情況下減小對制冷劑的影響;其次,流入電子膨脹閥為液態(tài)時,電子膨脹閥工況更加穩(wěn)定,克服了現(xiàn)有技術中使用兩個或以上電子膨脹閥由于第一個電子膨脹閥已經(jīng)起到過節(jié)流作用,使得進入第二個電子膨脹閥的制冷劑為氣液兩相的制冷劑從而影響所述第二個電子膨脹閥工況的問題;再次,相比現(xiàn)有技術中使用毛細管,毛細管的長度是不可調的,導致精密空調恒溫除濕模式下達不到0制冷除濕,本申請中使用一個電子膨脹閥,電子膨脹閥的開度易于控制,從而更加容易實現(xiàn)恒溫除濕,使得蒸發(fā)器1部對室溫的加熱程度和蒸發(fā)器2部對室溫的降溫程度相同,從而實現(xiàn)0制冷除濕。
在第一方面第一種可能的實現(xiàn)方式中,所述在制冷并除濕的情況下,根據(jù)所述冷凝器(2)的冷凝壓力控制所述室外風機(9)的轉速,根據(jù)流經(jīng)所述蒸發(fā)器(3)的風進出所述蒸發(fā)器(3)時的溫差進行控制所述室內風機(10)的轉速,根據(jù)所述蒸發(fā)器2部(7)的輸出的風的溫度控制所述壓縮機(1)的轉速,所述冷凝壓力是指制冷劑在冷凝器內冷凝時的壓力,根據(jù)過熱度值控制所述電子膨脹閥(8)的打開程度。
結合第一方面第一種可能的實現(xiàn)方式,在第二種可能的實現(xiàn)方式中,在所述在制冷并除濕的情況下方面,所述蒸發(fā)器(3)具體用于:所述蒸發(fā)器1部(5)對所述電子膨脹閥(8)輸出的所述氣液兩相的制冷劑與環(huán)境進行熱量交換,以提高所述氣液兩相的制冷劑中氣態(tài)的比例,并將提高了氣態(tài)比例的所述氣液兩相的制冷劑輸出至所述換向閥(6)的端口E,所述換向閥(6)通過端口S將所述提高了氣態(tài)比例的所述氣液兩相的制冷劑輸出到所述蒸發(fā)器2部(7)進行換熱,所述蒸發(fā)器2部(7)將所述提高了氣態(tài)比例的所述氣液兩相的制冷劑轉變?yōu)闅鈶B(tài)制冷劑后輸出給所述壓縮機(1)。
結合第一方面第二種可能的實現(xiàn)方式,在第三種可能的實現(xiàn)方式中,在所述在恒溫除濕的情況下,根據(jù)進入所述所述蒸發(fā)器(3)的風的溫度進行控制所述室外風機(9)的轉速以降低所述室外風機(9)的轉速,根據(jù)流經(jīng)所述蒸發(fā)器(3)的風進出所述蒸發(fā)器(3)時的溫差進行控制所述室內風機(10)的轉速,根據(jù)所述蒸發(fā)器(3)輸出的風的溫度控制所述壓縮機(1)的轉速,根據(jù)蒸發(fā)壓力控制所述電子膨脹閥(8)的打開程度,所述蒸發(fā)壓力是指制冷劑在蒸發(fā)器內蒸發(fā)時的壓力。結合第一方面第三種可能的實現(xiàn)方式,在第四種可能的實現(xiàn)方式中,所述壓縮機(1),用于將進入所述壓縮機(1)的氣態(tài)制冷劑進行壓縮,以使所述氣態(tài)制冷劑的壓強和溫度升高,且將升高了溫度和壓強后的氣態(tài)制冷劑輸出給冷凝器(2);
所述冷凝器(2),用于將所述升高了溫度和壓強后的氣態(tài)制冷劑進行降溫,以使所述氣態(tài)制冷劑凝結為液態(tài)制冷劑后輸出給所述換向閥(6)。
第二方面提供一種輕載除濕制冷方法,運行所述輕載除濕制冷方法的裝置包括壓縮機、冷凝器、及蒸發(fā)器、及換向閥、及電子膨脹閥,所述蒸發(fā)器,分為蒸發(fā)器1部和蒸發(fā)器2部,所述冷凝器具有室外風機,所述蒸發(fā)器具有室內風機,所述壓縮機輸入端與所述蒸發(fā)器2部輸出端相連,所述壓縮機輸出端與所述冷凝器輸入端相連,所述換向閥具有端口D、與端口S、與端口C與端口E,所述冷凝器輸出端與所述換向閥端口D相連,所述換向閥的端口S與所述蒸發(fā)器2部輸入端相連,所述電子膨脹閥串聯(lián)于所述換向閥及所述蒸發(fā)器1部之間,所述各端之間均使用制冷劑管道相連,其特征在于,包括:
在制冷并除濕的情況下,將所述換向閥(6)的所述端口D與所述換向閥(6)的所述端口C導通,且將所述換向閥(6)的所述端口E與所述端口S導通,以使所述冷凝器(2)輸出的所述液態(tài)制冷劑通過所述端口D進入所述換向閥(6);
通過所述端口C將所述換向閥(6)中的所述液態(tài)制冷劑輸出到所述電子膨脹閥(8),所述電子膨脹閥(8)的打開程度根據(jù)過熱度值控制,從而對所述液態(tài)制冷劑進行節(jié)流與制冷,并降低所述液態(tài)制冷劑的壓強和溫度并形成氣液兩相的制冷劑后,輸出給所述蒸發(fā)器(3);
在恒溫除濕的情況下,控制所述換向閥的所述端口D與所述端口E導通,且所述端口C與所述端口S導通,以使所述冷凝器輸出的所述液態(tài)制冷劑通過所述端口D進入所述換向閥,并通過所述端口E輸出到所述蒸發(fā)器1部;
所述蒸發(fā)器1部對所述換向閥輸出的所述液態(tài)制冷劑進行降溫并對室內空氣溫度進行加熱后,將降低溫度的所述液態(tài)制冷劑輸出到所述電子膨脹閥進行節(jié)流與制冷以變?yōu)闅庖簝上嗟闹评鋭?,其中,根?jù)蒸發(fā)壓力控制所述電子膨脹閥的打開程度,所述蒸發(fā)壓力是指制冷劑在蒸發(fā)器內蒸發(fā)時的壓力;
將所述氣液兩相的制冷劑通過所述換向閥的端口C與端口S輸出到所述蒸發(fā)器2部,所述蒸發(fā)器2部將所述氣液兩相的制冷劑與室內空氣進行熱交換,以對所述室內空氣進行降溫與除濕。
在第二方面第一種可能的實現(xiàn)方式中,所述在制冷并除濕的情況下,還包括:根據(jù)所述冷凝器(2)的冷凝壓力控制所述室外風機(9)的轉速,根據(jù)流經(jīng)所述蒸發(fā)器(3)的風進出所述蒸發(fā)器(3)時的溫差進行控制所述室內風機(10)的轉速,根據(jù)所述蒸發(fā)器2部(7)的輸出的風的溫度控制所述壓縮機(1)的轉速,所述冷凝壓力是指制冷劑在冷凝器內冷凝時的壓力,根據(jù)過熱度值控制所述電子膨脹閥(8)的打開程度。
結合第二方面第一種可能的實現(xiàn)方式,在第二種可能的實現(xiàn)方式中,在所述通過所述端口C將所述換向閥(6)中的所述液態(tài)制冷劑輸出到所述電子膨脹閥(8),所述電子膨脹閥(8)的打開程度根據(jù)過熱度值控制,從而對所述液態(tài)制冷劑進行節(jié)流與制冷,并降低所述液態(tài)制冷劑的壓強和溫度并形成氣液兩相的制冷劑后,輸出給所述蒸發(fā)器(3)之后,還包括:
所述蒸發(fā)器1部(5)對所述電子膨脹閥(8)輸出的所述氣液兩相的制冷劑與環(huán)境進行熱量交換,以提高所述氣液兩相的制冷劑中氣態(tài)的比例,并將提高了氣態(tài)比例的所述氣液兩相的制冷劑輸出至所述換向閥(6)的端口E;
所述換向閥(6)通過端口S將所述提高了氣態(tài)比例的所述氣液兩相的制冷劑輸出到所述蒸發(fā)器2部(7)進行換熱;
所述蒸發(fā)器2部(7)將所述提高了氣態(tài)比例的所述氣液兩相的制冷劑轉變?yōu)闅鈶B(tài)制冷劑后輸出給所述壓縮機(1)。
結合第二方面第二種可能的實現(xiàn)方式,在第三種可能的實現(xiàn)方式中,在所述在恒溫除濕的情況下,還包括:根據(jù)進入所述所述蒸發(fā)器(3)的風的溫度進行控制所述室外風機(9)的轉速以降低所述室外風機(9)的轉速,根據(jù)流經(jīng)所述蒸發(fā)器(3)的風進出所述蒸發(fā)器(3)時的溫差進行控制所述室內風機(10)的轉速,根據(jù)所述蒸發(fā)器(3)輸出的風的溫度控制所述壓縮機(1)的轉速,根據(jù)蒸發(fā)壓力控制所述電子膨脹閥(8)的打開程度,所述蒸發(fā)壓力是指制冷劑在蒸發(fā)器內蒸發(fā)時的壓力。
結合第二方面第三種可能的實現(xiàn)方式,所述壓縮機(1)將進入所述壓縮機(1)的氣態(tài)制冷劑進行壓縮,以使所述氣態(tài)制冷劑的壓強和溫度升高,且將升高了溫度和壓強后的氣態(tài)制冷劑輸出給冷凝器(2);
所述冷凝器(2),用于將所述升高了溫度和壓強后的氣態(tài)制冷劑進行降溫,以使所述氣態(tài)制冷劑凝結為液態(tài)制冷劑后輸出給所述換向閥(6)。
第三方面提供一種數(shù)據(jù)中心,包括通信設備,其特征在于,還包括:如第一方面至第一方面第四種可能所述的輕載除濕裝置,用于對所述通信設備進行制冷除濕或恒溫除濕。
有益效果:在恒溫除濕的情形下,通過改變制冷劑在電子膨脹閥及蒸發(fā)器1部與蒸發(fā)器2部之間的流向,從而精簡了設備,尤其減少了電子膨脹閥的數(shù)量,實現(xiàn)了在具備制冷除濕功能的基礎上,還能夠操控簡單且低成本的進行恒溫除濕的技術效果。具體地,首先,通過改變制冷劑在電子膨脹閥及蒸發(fā)器1部與蒸發(fā)器2部之間的流向,減少了電子膨脹閥數(shù)量,一方面節(jié)省了成本;另一方面,因為電子膨脹閥即使全開,仍然對流路具有節(jié)流作用,所以減少電子膨脹閥的使用,可以在不需要節(jié)流的情況下減小對制冷劑的影響;其次,流入電子膨脹閥為液態(tài)時,電子膨脹閥工況更加穩(wěn)定,克服了現(xiàn)有技術中使用兩個或以上電子膨脹閥由于第一個電子膨脹閥已經(jīng)起到過節(jié)流作用,使得進入第二個電子膨脹閥的制冷劑為氣液兩相的制冷劑從而影響所述第二個電子膨脹閥工況的問題;再次,相比現(xiàn)有技術中使用毛細管,毛細管的長度是不可調的,導致精密空調恒溫除濕模式下達不到0制冷除濕,本申請中使用一個電子膨脹閥,電子膨脹閥的開度易于控制,從而更加容易實現(xiàn)恒溫除濕,使得蒸發(fā)器1部對室溫的加熱程度和蒸發(fā)器2部對室溫的降溫程度相同,從而實現(xiàn)0制冷除濕。
附圖說明
為了更清楚地說明本發(fā)明實施例或現(xiàn)有技術中的技術方案,下面將對實施例或現(xiàn)有技術描述中所需要使用的附圖作一簡單地介紹,顯而易見地,下面描述中的附圖是本發(fā)明的一些實施例,對于本領域普通技術人員來講,在不付出創(chuàng)造性勞動性的前提下,還可以根據(jù)這些附圖獲得其他的附圖。
圖1為現(xiàn)有技術提供的一種輕載除濕制冷裝置的內部實現(xiàn)原理圖;
圖2為本發(fā)明實施例提供的一種輕載除濕制冷裝置的內部實現(xiàn)原理圖;
圖3為本發(fā)明實施例提供的一種輕載除濕制冷裝置的內部實現(xiàn)原理圖;
圖4為本發(fā)明實施例提供的一種輕載除濕制冷裝置的內部實現(xiàn)原理圖;
圖5為一種改進后的蒸發(fā)器的內部實現(xiàn)原理圖;
圖6為分液器工作原理圖;
圖7為本發(fā)明實施例提供的一種輕載除濕制冷方法的流程圖;
圖8為本發(fā)明實施例提供的一種數(shù)據(jù)中心的實現(xiàn)原理圖;
具體實施方式
為使本發(fā)明實施例的目的、技術方案和優(yōu)點更加清楚,下面將結合本發(fā)明實施例中的附圖,對本發(fā)明實施例中的技術方案進行清楚、完整地描述,顯然,所描述的實施例是本發(fā)明一部分實施例,而不是全部的實施例。基于本發(fā)明中的實施例,本領域普通技術人員在沒有作出創(chuàng)造性勞動前提下所獲得的所有其他實施例,都屬于本發(fā)明保護的范圍。
精密空調機廣泛適用于計算機機房、程控交換機機房、衛(wèi)星移動通訊站、數(shù)據(jù)集裝箱等高精密環(huán)境,這樣的環(huán)境對空氣的溫度、濕度、氣流分布等各項指標有很高的要求,必須由每年365天、每天24小時安全可靠運行的專用機房精密空調設備來保障。
本發(fā)明的一種恒溫除濕裝置由壓縮機、位于室外的壓縮機下游的冷凝器、及位于室內的壓縮機上游的蒸發(fā)器、及電子膨脹閥、及蒸發(fā)器中間的節(jié)流機構連接構成。本發(fā)明廣泛適用于計算機機房、程控交換機機房、衛(wèi)星移動通訊站、數(shù)據(jù)集裝箱等高精密環(huán)境,當然,也適用于家用領域。
如圖1所示,為現(xiàn)有技術提供的一種輕載除濕制冷裝置的內部實現(xiàn)原理圖;現(xiàn)有技術中使用兩個電子膨脹閥,不僅提高了成本,而且影響第二個電子膨脹閥的工況,若使用毛細管的,毛細管的長度是不可調的,導致精密空調恒溫除濕模式下達不到0制冷除濕,恒溫除濕效果差。
如圖2所示,本發(fā)明實施例提供的一種輕載除濕制冷裝置的的內部實現(xiàn)原理圖;
本實施例所提供的所述一種輕載除濕制冷裝置,包括壓縮機(1)、冷凝器(2)、及蒸發(fā)器(3)、及換向閥(6)、及電子膨脹閥(8),所述蒸發(fā)器(3),分為蒸發(fā)器1部(5)和蒸發(fā)器2部(7),所述冷凝器(2)具有室外風機(9),所述蒸發(fā)器(3)具有室內風機(10),所述壓縮機(1)輸入端與所述蒸發(fā)器2部(7)輸出端相連,所述壓縮機(1)輸出端與所述冷凝器(2)輸入端相連,其特征在于:
所述換向閥(6)包括端口D、與端口S、與端口C與端口E,所述換向閥(6)的所述端口D與所述冷凝器(2)輸出端相連,所述換向閥(6)的所述端口S與所述蒸發(fā)器2部(7)輸入端相連,所述電子膨脹閥(8)串聯(lián)于所述換向閥(6)及所述蒸發(fā)器1部(5)之間,所述各端之間均使用制冷劑管道(4)相連;
所述輕載除濕制冷裝置在制冷并除濕時,所述換向閥(6)的所述端口D與所述端口C導通,且所述換向閥(6)的所述端口E與所述端口S導通,以使所述冷凝器(2)輸出的所述液態(tài)制冷劑通所述電子膨脹閥(8)用于節(jié)流和制冷以降低所述液態(tài)制冷劑的壓強和溫度并形成氣液兩相的制冷劑后,輸出給所述蒸發(fā)器(3);
所述輕載除濕制冷裝置在恒溫除濕時,所述換向閥(6)的所述端口D與所述端口E導通,且所述端口C與所述端口S導通,以使所述冷凝器(2)輸出的所述液態(tài)制冷劑通過所述端口D進入所述換向閥(6),并通過所述端口E輸出到所述蒸發(fā)器1部(5),所述蒸發(fā)器1部(5)對所述換向閥(6)輸出的所述液態(tài)制冷劑進行降溫并對室內空氣溫度進行加熱后,將降低溫度的所述液態(tài)制冷劑輸出到所述電子膨脹閥(8)進行節(jié)流與制冷以變?yōu)闅庖簝上嗟闹评鋭?;所述氣液兩相的制冷劑通過所述換向閥(6)的端口C與端口S輸出到所述蒸發(fā)器2部(7),所述蒸發(fā)器2部(7)將所述氣液兩相的制冷劑與室內空氣進行熱交換,以對所述室內空氣進行降溫與除濕。
有益效果:在恒溫除濕的情形下,通過改變制冷劑在電子膨脹閥及蒸發(fā)器1部與蒸發(fā)器2部之間的流向,從而精簡了設備,尤其減少了電子膨脹閥的數(shù)量,實現(xiàn)了在具備制冷除濕功能的基礎上,還能夠操控簡單且低成本的進行恒溫除濕的技術效果。具體地,首先,通過改變制冷劑在電子膨脹閥及蒸發(fā)器1部與蒸發(fā)器2部之間的流向,減少了電子膨脹閥數(shù)量,一方面節(jié)省了成本;另一方面,因為電子膨脹閥即使全開,仍然對流路具有節(jié)流作用,所以減少電子膨脹閥的使用,可以在不需要節(jié)流的情況下減小對制冷劑的影響;其次,流入電子膨脹閥為液態(tài)時,電子膨脹閥工況更加穩(wěn)定,克服了現(xiàn)有技術中使用兩個或以上電子膨脹閥由于第一個電子膨脹閥已經(jīng)起到過節(jié)流作用,使得進入第二個電子膨脹閥的制冷劑為氣液兩相的制冷劑從而影響所述第二個電子膨脹閥工況的問題;再次,相比現(xiàn)有技術中使用毛細管,毛細管的長度是不可調的,導致精密空調恒溫除濕模式下達不到0制冷除濕,本申請中使用一個電子膨脹閥,電子膨脹閥的開度易于控制,從而更加容易實現(xiàn)恒溫除濕,使得蒸發(fā)器1部對室溫的加熱程度和蒸發(fā)器2部對室溫的降溫程度相同,從而實現(xiàn)0制冷除濕。
圖3為本發(fā)明實施例提供的一種輕載除濕制冷裝置的內部實現(xiàn)原理圖;
本實施例所提供的所述一種輕載除濕制冷裝置,包括壓縮機(1)、冷凝器(2)、及蒸發(fā)器(3)、及換向閥(6)、及電子膨脹閥(8),所述蒸發(fā)器(3),分為蒸發(fā)器1部(5)和蒸發(fā)器2部(7),所述冷凝器(2)具有室外風機(9),所述蒸發(fā)器(3)具有室內風機(10),所述壓縮機(1)輸入端與所述蒸發(fā)器2部(7)輸出端相連,所述壓縮機(1)輸出端與所述冷凝器(2)輸入端相連,其特征在于:
所述換向閥(6)包括端口D、與端口S、與端口C與端口E,所述換向閥(6)的所述端口D與所述冷凝器(2)輸出端相連,所述換向閥(6)的所述端口S與所述蒸發(fā)器2部(7)輸入端相連,所述電子膨脹閥(8)串聯(lián)于所述換向閥(6)及所述蒸發(fā)器1部(5)之間,所述各端之間均使用制冷劑管道(4)相連;
在制冷并除濕的情況下,所述換向閥(6)的所述端口D與所述換向閥(6)的所述端口C導通,且所述換向閥(6)的所述端口E與所述端口S導通,以使所述冷凝器(2)輸出的所述液態(tài)制冷劑通過所述端口D進入所述換向閥(6),并通過所述端口C輸出到所述電子膨脹閥(8),所述電子膨脹閥(8)的打開程度根據(jù)過熱度值控制從而對所述液態(tài)制冷劑進行節(jié)流與制冷,所述電子膨脹閥(8)降低所述液態(tài)制冷劑的壓強和溫度并形成氣液兩相的制冷劑后,輸出給所述蒸發(fā)器(3);
在恒溫除濕的情況下,所述換向閥(6)的所述端口D與所述端口E導通,且所述端口C與所述端口S導通,以使所述冷凝器(2)輸出的所述液態(tài)制冷劑通過所述端口D進入所述換向閥(6),并通過所述端口E輸出到所述蒸發(fā)器1部(5),所述蒸發(fā)器1部(5)對所述換向閥(6)輸出的所述液態(tài)制冷劑進行降溫并對室內空氣溫度進行加熱后,將降低溫度的所述液態(tài)制冷劑輸出到所述電子膨脹閥(8)進行節(jié)流與制冷以變?yōu)闅庖簝上嗟闹评鋭?,根?jù)蒸發(fā)壓力控制所述電子膨脹閥(8)的打開程度,所述蒸發(fā)壓力是指制冷劑在蒸發(fā)器內蒸發(fā)時的壓力;將所述氣液兩相的制冷劑通過所述換向閥(6)的端口C與端口S輸出到所述蒸發(fā)器2部(7),所述蒸發(fā)器2部(7)將所述氣液兩相的制冷劑與室內空氣進行熱交換,以對所述室內空氣進行降溫與除濕。
進一步地,所述在制冷并除濕的情況下,根據(jù)所述冷凝器(2)的冷凝壓力控制所述室外風機(9)的轉速,根據(jù)流經(jīng)所述蒸發(fā)器(3)的風進出所述蒸發(fā)器(3)時的溫差進行控制所述室內風機(10)的轉速,根據(jù)所述蒸發(fā)器2部(7)的輸出的風的溫度控制所述壓縮機(1)的轉速,所述冷凝壓力是指制冷劑在冷凝器內冷凝時的壓力,根據(jù)過熱度值控制所述電子膨脹閥(8)的打開程度。
進一步地,在所述在制冷并除濕的情況下方面,所述蒸發(fā)器(3)具體用于:
所述蒸發(fā)器1部(5)對所述電子膨脹閥(8)輸出的所述氣液兩相的制冷劑與環(huán)境進行熱量交換,以提高所述氣液兩相的制冷劑中氣態(tài)的比例,并將提高了氣態(tài)比例的所述氣液兩相的制冷劑輸出至所述換向閥(6)的端口E,所述換向閥(6)通過端口S將所述提高了氣態(tài)比例的所述氣液兩相的制冷劑輸出到所述蒸發(fā)器2部(7)進行換熱,所述蒸發(fā)器2部(7)將所述提高了氣態(tài)比例的所述氣液兩相的制冷劑轉變?yōu)闅鈶B(tài)制冷劑后輸出給所述壓縮機(1)。
進一步地,在所述在恒溫除濕的情況下,根據(jù)進入所述所述蒸發(fā)器(3)的風的溫度進行控制所述室外風機(9)的轉速以降低所述室外風機(9)的轉速,根據(jù)流經(jīng)所述蒸發(fā)器(3)的風進出所述蒸發(fā)器(3)時的溫差進行控制所述室內風機(10)的轉速,根據(jù)所述蒸發(fā)器(3)輸出的風的溫度控制所述壓縮機(1)的轉速,根據(jù)蒸發(fā)壓力控制所述電子膨脹閥(8)的打開程度,所述蒸發(fā)壓力是指制冷劑在蒸發(fā)器內蒸發(fā)時的壓力。
進一步地,所述壓縮機(1),用于將進入所述壓縮機(1)的氣態(tài)制冷劑進行壓縮,以使所述氣態(tài)制冷劑的壓強和溫度升高,且將升高了溫度和壓強后的氣態(tài)制冷劑輸出給冷凝器(2);
所述冷凝器(2),用于將所述升高了溫度和壓強后的氣態(tài)制冷劑進行降溫,以使所述氣態(tài)制冷劑凝結為液態(tài)制冷劑后輸出給所述換向閥(6)。
有益效果:在恒溫除濕的情形下,通過改變制冷劑在電子膨脹閥及蒸發(fā)器1部與蒸發(fā)器2部之間的流向,從而精簡了設備,尤其減少了電子膨脹閥的數(shù)量,實現(xiàn)了在具備制冷除濕功能的基礎上,還能夠操控簡單且低成本的進行恒溫除濕的技術效果。具體地,首先,通過改變制冷劑在電子膨脹閥及蒸發(fā)器1部與蒸發(fā)器2部之間的流向,減少了電子膨脹閥數(shù)量,一方面節(jié)省了成本;另一方面,因為電子膨脹閥即使全開,仍然對流路具有節(jié)流作用,所以減少電子膨脹閥的使用,可以在不需要節(jié)流的情況下減小對制冷劑的影響;其次,流入電子膨脹閥為液態(tài)時,電子膨脹閥工況更加穩(wěn)定,克服了現(xiàn)有技術中使用兩個或以上電子膨脹閥由于第一個電子膨脹閥已經(jīng)起到過節(jié)流作用,使得進入第二個電子膨脹閥的制冷劑為氣液兩相的制冷劑從而影響所述第二個電子膨脹閥工況的問題;再次,相比現(xiàn)有技術中使用毛細管,毛細管的長度是不可調的,導致精密空調恒溫除濕模式下達不到0制冷除濕,本申請中使用一個電子膨脹閥,電子膨脹閥的開度易于控制,從而更加容易實現(xiàn)恒溫除濕,使得蒸發(fā)器1部對室溫的加熱程度和蒸發(fā)器2部對室溫的降溫程度相同,從而實現(xiàn)0制冷除濕。
進一步地,如圖4所述,所述一種輕載除濕制冷裝置的還包括分液器,分液器(61),所述分液器(61)一端與所述換向閥(6)的所述S端口相連接,另一端與所述蒸發(fā)器2部相連接,用于當所述蒸發(fā)器(3)內部的制冷劑管道存在大于等于2組進口和出口時,為每一組所述進口和出口之間的蒸發(fā)器2部傳輸制冷劑。
圖5為本發(fā)明實施例提供的一種現(xiàn)有蒸發(fā)器的內部實現(xiàn)原理圖;所述蒸發(fā)器具有進口41與出口51,蒸發(fā)器11內部的管道包括上下兩部分,在現(xiàn)有的蒸發(fā)器中會包括N個部分,N按照需要在正整數(shù)的范圍內取值。如圖中上半部分所示,所述蒸發(fā)器根據(jù)內部管道的設置,在蒸發(fā)器內部管道的一處將所述管道分為管道21與管道31,相應的,所述蒸發(fā)器被分為設置有管道21的蒸發(fā)器1部與設置有管道31的蒸發(fā)器2部。
可選地,所述蒸發(fā)器,分為蒸發(fā)器1部和蒸發(fā)器2部,具體包括:
將所述蒸發(fā)器內部的制冷劑管道在距離所述制冷劑管道進口大于等于所述制冷劑管道長度的1/3至小于等于所述制冷劑管道長度的的2/3之間任意一處斷開以形成2部分管道,所述2部分管道分別為所述蒸發(fā)器1部和蒸發(fā)器2部,以使所述蒸發(fā)器1部和蒸發(fā)器2部分別獨立運行。
可選地,將所述蒸發(fā)器內部的制冷劑管道在距離所述制冷劑管道進口大于等于所述制冷劑管道長度的1/3至小于等于所述制冷劑管道長度的的2/3之間任意一處斷開以形成2部分管道,所述2部分管道分別為所述蒸發(fā)器1部和蒸發(fā)器2部,以使所述蒸發(fā)器1部和蒸發(fā)器2部分別獨立運行,具體包括:
將所述蒸發(fā)器內部的制冷劑管道在距離所述蒸發(fā)器進氣口1/2處斷開以形成2部分制冷劑管道所述2部分管道分別為所述蒸發(fā)器1部和蒸發(fā)器2部,以使所述蒸發(fā)器1部和蒸發(fā)器2部分別獨立運行。
圖6為本發(fā)明實施例提供的一種圖6為分液器工作原理圖;
圖7為本發(fā)明實施例提供的一種輕載除濕制冷方法,運行所述輕載除濕制冷方法的裝置包括壓縮機、冷凝器、及蒸發(fā)器、及換向閥、及電子膨脹閥,所述蒸發(fā)器,分為蒸發(fā)器1部和蒸發(fā)器2部,所述冷凝器具有室外風機,所述蒸發(fā)器具有室內風機,所述壓縮機輸入端與所述蒸發(fā)器2部輸出端相連,所述壓縮機輸出端與所述冷凝器輸入端相連,所述換向閥具有端口D、與端口S、與端口C與端口E,所述冷凝器輸出端與所述換向閥端口D相連,所述換向閥的端口S與所述蒸發(fā)器2部輸入端相連,所述電子膨脹閥串聯(lián)于所述換向閥及所述蒸發(fā)器1部之間,所述各端之間均使用制冷劑管道相連,所述除濕裝置具有控制器,所述控制器發(fā)出指令控制所述除濕裝置的各部件進行如下步驟:
步驟S701:在制冷并除濕的情況下,將所述換向閥(6)的所述端口D與所述換向閥(6)的所述端口C導通,且將所述換向閥(6)的所述端口E與所述端口S導通,以使所述冷凝器(2)輸出的所述液態(tài)制冷劑通過所述端口D進入所述換向閥(6);
步驟S702:通過所述端口C將所述換向閥(6)中的所述液態(tài)制冷劑輸出到所述電子膨脹閥(8),所述電子膨脹閥(8)的打開程度根據(jù)過熱度值控制,從而對所述液態(tài)制冷劑進行節(jié)流與制冷,并降低所述液態(tài)制冷劑的壓強和溫度并形成氣液兩相的制冷劑后,輸出給所述蒸發(fā)器(3);
步驟S703:在恒溫除濕的情況下,控制所述換向閥的所述端口D與所述端口E導通,且所述端口C與所述端口S導通,以使所述冷凝器輸出的所述液態(tài)制冷劑通過所述端口D進入所述換向閥,并通過所述端口E輸出到所述蒸發(fā)器1部;
步驟S704:所述蒸發(fā)器1部對所述換向閥輸出的所述液態(tài)制冷劑進行降溫并對室內空氣溫度進行加熱后,將降低溫度的所述液態(tài)制冷劑輸出到所述電子膨脹閥進行節(jié)流與制冷以變?yōu)闅庖簝上嗟闹评鋭渲?,根?jù)蒸發(fā)壓力控制所述電子膨脹閥的打開程度,所述蒸發(fā)壓力是指制冷劑在蒸發(fā)器內蒸發(fā)時的壓力;
步驟S705:將所述氣液兩相的制冷劑通過所述換向閥的端口C與端口S輸出到所述蒸發(fā)器2部,所述蒸發(fā)器2部將所述氣液兩相的制冷劑與室內空氣進行熱交換,以對所述室內空氣進行降溫與除濕。
進一步地,所述在制冷并除濕的情況下,還包括:根據(jù)所述冷凝器(2)的冷凝壓力控制所述室外風機(9)的轉速,根據(jù)流經(jīng)所述蒸發(fā)器(3)的風進出所述蒸發(fā)器(3)時的溫差進行控制所述室內風機(10)的轉速,根據(jù)所述蒸發(fā)器2部(7)的輸出的風的溫度控制所述壓縮機(1)的轉速,所述冷凝壓力是指制冷劑在冷凝器內冷凝時的壓力,根據(jù)過熱度值控制所述電子膨脹閥(8)的打開程度。
進一步地,在所述通過所述端口C將所述換向閥(6)中的所述液態(tài)制冷劑輸出到所述電子膨脹閥(8),所述電子膨脹閥(8)的打開程度根據(jù)過熱度值控制,從而對所述液態(tài)制冷劑進行節(jié)流與制冷,并降低所述液態(tài)制冷劑的壓強和溫度并形成氣液兩相的制冷劑后,輸出給所述蒸發(fā)器(3)之后,還包括:
所述蒸發(fā)器1部(5)對所述電子膨脹閥(8)輸出的所述氣液兩相的制冷劑與環(huán)境進行熱量交換,以提高所述氣液兩相的制冷劑中氣態(tài)的比例,并將提高了氣態(tài)比例的所述氣液兩相的制冷劑輸出至所述換向閥(6)的端口E;
所述換向閥(6)通過端口S將所述提高了氣態(tài)比例的所述氣液兩相的制冷劑輸出到所述蒸發(fā)器2部(7)進行換熱;
所述蒸發(fā)器2部(7)將所述提高了氣態(tài)比例的所述氣液兩相的制冷劑轉變?yōu)闅鈶B(tài)制冷劑后輸出給所述壓縮機(1)。
進一步地,在所述在恒溫除濕的情況下,還包括:根據(jù)進入所述所述蒸發(fā)器(3)的風的溫度進行控制所述室外風機(9)的轉速以降低所述室外風機(9)的轉速,根據(jù)流經(jīng)所述蒸發(fā)器(3)的風進出所述蒸發(fā)器(3)時的溫差進行控制所述室內風機(10)的轉速,根據(jù)所述蒸發(fā)器(3)輸出的風的溫度控制所述壓縮機(1)的轉速,根據(jù)蒸發(fā)壓力控制所述電子膨脹閥(8)的打開程度,所述蒸發(fā)壓力是指制冷劑在蒸發(fā)器內蒸發(fā)時的壓力。
進一步地,所述壓縮機(1)將進入所述壓縮機(1)的氣態(tài)制冷劑進行壓縮,以使所述氣態(tài)制冷劑的壓強和溫度升高,且將升高了溫度和壓強后的氣態(tài)制冷劑輸出給冷凝器(2);
所述冷凝器(2),用于將所述升高了溫度和壓強后的氣態(tài)制冷劑進行降溫,以使所述氣態(tài)制冷劑凝結為液態(tài)制冷劑后輸出給所述換向閥(6)。
可選地,步驟S707:所述蒸發(fā)器,分為蒸發(fā)器1部和蒸發(fā)器2部,具體包括:
將所述蒸發(fā)器內部的制冷劑管道在距離所述制冷劑管道進口大于等于所述制冷劑管道長度的1/3至小于等于所述制冷劑管道長度的的2/3之間任意一處斷開以形成2部分管道,所述2部分管道分別為所述蒸發(fā)器1部和蒸發(fā)器2部,以使所述蒸發(fā)器1部和蒸發(fā)器2部分別獨立運行。
可選地,步驟S708:將所述蒸發(fā)器內部的制冷劑管道在距離所述制冷劑管道進口大于等于所述制冷劑管道長度的1/3至小于等于所述制冷劑管道長度的的2/3之間任意一處斷開以形成2部分管道,所述2部分管道分別為所述蒸發(fā)器1部和蒸發(fā)器2部,以使所述蒸發(fā)器1部和蒸發(fā)器2部分別獨立運行,具體包括:
將所述蒸發(fā)器內部的制冷劑管道在距離所述蒸發(fā)器進氣口1/2處斷開以形成2部分制冷劑管道所述2部分管道分別為所述蒸發(fā)器1部和蒸發(fā)器2部,以使所述蒸發(fā)器1部和蒸發(fā)器2部分別獨立運行。
可選地,步驟S709:在運行輕載除濕制冷方法的裝置還包括分液器的情形下,所述分液器一端與所述換向閥的所述S端口相連接,另一端與所述蒸發(fā)器2部相連接,當所述蒸發(fā)器(3)內部的制冷劑管道存在大于等于2組進口和出口時,所述分液器為每一組所述進口和出口之間的蒸發(fā)器2部傳輸制冷劑。
有益效果:在恒溫除濕的情形下,通過改變制冷劑在電子膨脹閥及蒸發(fā)器1部與蒸發(fā)器2部之間的流向,從而精簡了設備,尤其減少了電子膨脹閥的數(shù)量,實現(xiàn)了在具備制冷除濕功能的基礎上,還能夠操控簡單且低成本的進行恒溫除濕的技術效果。具體地,首先,通過改變制冷劑在電子膨脹閥及蒸發(fā)器1部與蒸發(fā)器2部之間的流向,減少了電子膨脹閥數(shù)量,一方面節(jié)省了成本;另一方面,因為電子膨脹閥即使全開,仍然對流路具有節(jié)流作用,所以減少電子膨脹閥的使用,可以在不需要節(jié)流的情況下減小對制冷劑的影響;其次,流入電子膨脹閥為液態(tài)時,電子膨脹閥工況更加穩(wěn)定,克服了現(xiàn)有技術中使用兩個或以上電子膨脹閥由于第一個電子膨脹閥已經(jīng)起到過節(jié)流作用,使得進入第二個電子膨脹閥的制冷劑為氣液兩相的制冷劑從而影響所述第二個電子膨脹閥工況的問題;再次,相比現(xiàn)有技術中使用毛細管,毛細管的長度是不可調的,導致精密空調恒溫除濕模式下達不到0制冷除濕,本申請中使用一個電子膨脹閥,電子膨脹閥的開度易于控制,從而更加容易實現(xiàn)恒溫除濕,使得蒸發(fā)器1部對室溫的加熱程度和蒸發(fā)器2部對室溫的降溫程度相同,從而實現(xiàn)0制冷除濕。
如圖8所述的一種數(shù)據(jù)中心,其特征在于,包括通信設備,還包括:如所述實施例1-4所述的輕載除濕裝置,用于對所述通信設備進行制冷除濕或恒溫除濕。在數(shù)據(jù)中心運行的前期,通信設備負載率可能30%都不到,而這時空調的制冷輸出遠遠高于30%,這時當機房溫度高了,空調開啟制冷,慢慢的機房溫度降下去了,沒有制冷需求了,空調停機。這樣機房的溫度持續(xù)在波動,如果在這種場景下空調同時要對機房的濕度進行除濕,那么由于空調的有效運行時間變短,除濕量下降,則精密空調對機房的濕度失去控制,導致服務器機柜運行在高濕環(huán)境中,存在風險。本實施例中的所述輕載除濕裝置在恒溫除濕的情形下,通過改變制冷劑在電子膨脹閥及蒸發(fā)器1部與蒸發(fā)器2部之間的流向,從而精簡了設備,尤其減少了電子膨脹閥的數(shù)量,實現(xiàn)了在具備制冷除濕功能的基礎上,還能夠操控簡單且低成本的進行恒溫除濕的技術效果。具體地,首先,通過改變制冷劑在電子膨脹閥及蒸發(fā)器1部與蒸發(fā)器2部之間的流向,減少了電子膨脹閥數(shù)量,一方面節(jié)省了成本;另一方面,因為電子膨脹閥即使全開,仍然對流路具有節(jié)流作用,所以減少電子膨脹閥的使用,可以在不需要節(jié)流的情況下減小對制冷劑的影響;其次,流入電子膨脹閥為液態(tài)時,電子膨脹閥工況更加穩(wěn)定,克服了現(xiàn)有技術中使用兩個或以上電子膨脹閥由于第一個電子膨脹閥已經(jīng)起到過節(jié)流作用,使得進入第二個電子膨脹閥的制冷劑為氣液兩相的制冷劑從而影響所述第二個電子膨脹閥工況的問題;再次,相比現(xiàn)有技術中使用毛細管,毛細管的長度是不可調的,導致精密空調恒溫除濕模式下達不到0制冷除濕,本申請中使用一個電子膨脹閥,電子膨脹閥的開度易于控制,從而更加容易實現(xiàn)恒溫除濕,使得蒸發(fā)器1部對室溫的加熱程度和蒸發(fā)器2部對室溫的降溫程度相同,從而實現(xiàn)0制冷除濕。
最后應說明的是:以上各實施例僅用以說明本發(fā)明的技術方案,而非對其限制;盡管參照前述各實施例對本發(fā)明進行了詳細的說明,本領域的普通技術人員應當理解:其依然可以對前述各實施例所記載的技術方案進行修改,或者對其中部分或者全部技術特征進行等同替換;而這些修改或者替換,并不使相應技術方案的本質脫離本發(fā)明各實施例技術方案的范圍。